The Colin de Verdière parameter, excluded minors, and the spectral radius

نویسنده

  • Michael Tait
چکیده

In this paper we characterize graphs which maximize the spectral radius of their adjacency matrix over all graphs of Colin de Verdière parameter at most m. We also characterize graphs of maximum spectral radius with no H as a minor when H is either Kr or Ks,t. Interestingly, the extremal graphs match those which maximize the number of edges over all graphs with no H as a minor when r and s are small, but not when they are larger.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Colin de Verdière number of a graph

In 1990, Y. Colin de Verdière introduced a new graph parameter μ(G), based on spectral properties of matrices associated with G. He showed that μ(G) is monotone under taking minors and that planarity of G is characterized by the inequality μ(G) ≤ 3. Small values of this parameter correspond to interesting graph properties, like μ ≤ 3 if and only if the graph is planar, and μ ≤ 4 if and only if ...

متن کامل

Operations which preserve path-width at most two

The number of excluded minors for the graphs with path-width at most two is too large. To give a practical characterization of the obstructions for path-width at most two, we introduce the concept reducibility. We describe some operations, which preserve path-width at most two, and reduce the excluded minors to smaller graphs. In this sense, there are ten graphs which are non-reducible and obst...

متن کامل

The Colin De Verdière Graph Parameter for Threshold Graphs

We consider Schrödinger operators on threshold graphs and give an explicit construction of a Colin de Verdière matrix for each connected threshold graph G of n vertices. We conclude the Colin de Verdière graph parameter μ(G) satisfies μ(G) ≥ n− i− 1, where i is the number of isolates in the graph building sequence. The proof is algorithmic in nature, constructing a particular Colin de Verdiére ...

متن کامل

Nordhaus-Gaddum Problems for Colin de Verdière Type Parameters, Variants of Tree-width, and Related Parameters

A Nordhaus-Gaddum problem for a graph parameter is to determine a tight lower or upper bound for the sum or product of the parameter evaluated on a graph and on its complement. This article surveys Nordhaus-Gaddum results for the Colin de Verdière type parameters μ,ν , and ξ ; tree-width and its variants largeur d’arborescence, path-width, and proper path-width; and minor monotone ceilings of v...

متن کامل

Colin de Verdière number and graphs of polytopes

To every convex d-polytope with the dual graph G a matrix is associated. The matrix is shown to be a discrete Schrödinger operator on G with the second least eigenvalue of multiplicity d. This implies that the Colin de Verdière parameter of G is greater or equal d. The construction generalizes the one given by Lovász in the case d = 3.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017